An Introduction to Shrinkage Estimation of the Covariance Matrix: A Pedagogic Illustration

نویسندگان

  • Clarence C. Y. Kwan
  • Clarence C.Y. Kwan
چکیده

Shrinkage estimation of the covariance matrix of asset returns was introduced to the finance profession several years ago. Since then, the approach has also received considerable attention in various life science studies, as a remedial measure for covariance matrix estimation with insufficient observations of the underlying variables. The approach is about taking a weighted average of the sample covariance matrix and a target matrix of the same dimensions. The objective is to reach a weighted average that is closest to the true covariance matrix according to an intuitively appealing criterion. This paper presents, from a pedagogic perspective, an introduction to shrinkage estimation and uses Microsoft ExcelTM for its illustration. Further, some related pedagogic issues are discussed and, to enhance the learning experience of students on the topic, some Excelbased exercises are suggested.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Stein-type shrinkage covariance matrix estimators in high-dimensional settings

Estimating a covariance matrix is an important task in applications where the number of variables is larger than the number of observations. In the literature, shrinkage approaches for estimating a high-dimensional covariance matrix are employed to circumvent the limitations of the sample covariance matrix. A new family of nonparametric Stein-type shrinkage covariance estimators is proposed who...

متن کامل

Appoximation-assisted estimation of eigenvectors under quadratic loss

Improved estimation of eigen vector of covariance matrix is considered under uncertain prior information (UPI) regarding the parameter vector. Like statistical models underlying the statistical inferences to be made, the prior information will be susceptible to uncertainty and the practitioners may be reluctant to impose the additional information regarding parameters in the estimation process....

متن کامل

Shrinkage Estimation of the Power Spectrum Covariance Matrix

We introduce a novel statistical technique, shrinkage estimation, to estimate the power spectrum covariance matrix from a limited number of simulations. We optimally combine an empirical estimate of the covariance with a model (the target) to minimize the total mean squared error compared to the true underlying covariance. We test our technique on N-body simulations and evaluate its performance...

متن کامل

Nonlinear Shrinkage Estimation of Large-dimensional Covariance Matrices by Olivier Ledoit

Many statistical applications require an estimate of a covariance matrix and/or its inverse. When the matrix dimension is large compared to the sample size, which happens frequently, the sample covariance matrix is known to perform poorly and may suffer from ill-conditioning. There already exists an extensive literature concerning improved estimators in such situations. In the absence of furthe...

متن کامل

Nonlinear shrinkage estimation of large-dimensional covariance matrices

Many statistical applications require an estimate of a covariance matrix and/or its inverse. Whenthe matrix dimension is large compared to the sample size, which happens frequently, the samplecovariance matrix is known to perform poorly and may suffer from ill-conditioning. There alreadyexists an extensive literature concerning improved estimators in such situations. In the absence offurther kn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016